Design, Optimization and Validation of Conformal Cooling Technique for Additively Manufactured Mold Insert

نویسندگان

چکیده

Abstract Injection molding is a cyclic process comprising of cooling phase as the largest part this cycle. Providing efficient in lesser cycle times significant importance industry. Conformal proven technique for reduction injection molding. In study, we have replaced conventional circuit with an optimized conformal tool (mold). The required heat transfer rate, coolant flow rate and diameter channel was analytically calculated. Hybrid Laser powder bed fusion used to manufacture mold channels. material manufacturing maraging steel (M300). Thermal efficiency channels experimentally calculated using thermal imaging. Autodesk MoldFlow software simulate predict time results showed decrease increase help additively manufactured insert.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation-Based Optimization of Cooling Channels for Plastic Injection Mold

Injection molding has been the most popular method for making plastic products due to high efficiency and manufacturability. The injection molding process includes three significant stages: filling and packing stage, cooling stage, and ejection stage. Among these stages, cooling stage is very important one because it mainly affects the productivity and molding quality. Normally, 70%~80% of the ...

متن کامل

Additively Manufactured Porous Biomaterials and Implants

Recent advances in additive manufacturing (AM) techniques (otherwise known as 3D printing) have enabled fabrication of a new class of porous biomaterials (Figure 1) with arbitrarily complex and precisely controlled topologies that e.g. resemble the geometry and micro-architecture of (trabecular) bone. Since the geometry of scaffolds and biomaterials is an important factor in bone tissue regener...

متن کامل

Mechanical Properties of Additively Manufactured Thick Honeycombs

Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In ...

متن کامل

Additively manufactured medical products – the FDA perspective

Additive manufacturing/3D printing of medical devices is becoming more commonplace, a 3D printed drug is now commercially available, and bioprinting is poised to transition from laboratory to market. Despite the variety of technologies enabling these products, the US Food and Drug Administration (FDA) is charged with protecting and promoting the public health by ensuring these products are safe...

متن کامل

Additively Manufactured Pneumatically Driven Skin Electrodes

Telemedicine focuses on improving the quality of health care, particularly in out-of-hospital settings. One of the most important applications is the continuous remote monitoring of vital parameters. Long-term monitoring of biopotentials requires skin-electrodes. State-of-the-art electrodes such as Ag/AgCl wet electrodes lead, especially during long-term application, to complications, e.g., ski...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2021

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2070/1/012225